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Introduction
This text is written as an aid for those that are taking the course TMA947 Nonlin-
ear optimisation 2014/15. It contains the recommended theorems and proofs from
the year 2014/15 taken from the book An Introduction to Continuous Optimization
(second edition) by Niclas Andréasson, Anton Evgrafov, Michael Patriksson, Emil
Gustavsson and Magnus Onnheim.
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1 Separation Theorem

Theorem

Suppose that the set €' C R™ is nonempty, closed and convex. Supoose further
that the point y ¢ C. Then it holds that 3 a vector  # 0" and « € R such that
'y >aand 7lx < o,V € C.

Proof

Define a function f: R® — R as f(x) := ||z — y||*/2, * € R". From Weierstrass’
theorem we get that 3 a minimum & of f over C. By the first-order optimality
conditions, the minimum is characterised by the variational inequality:

(y—2) (x— %) <0, Ve € C (since —Vf(F) =y — )
We now define 7 := y — &. Since y ¢ C, w will be non-zero. Let o := (y — &)1 %.
The above variational inequality gives now that 7'z < 7#T& = o, V& € C, while
mly—a=(y—2)(y—2)=[y—2|*>0. 0

2 Farkas’ Lemma

Theorem
Consider the systems:
Ax = b,
x > 0",
and
Aly <0,
T (2)
by > 0.

If A e R™"™ and b € R™, then ezactly one of the systems 1 and 2 has a feasible
solution, and the other system is inconsistent.

Proof

Assume that system 1 has a solution @, then

bly=a"ATy >0
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But & > 0" = ATy < 0" cannot hold = system 2 is infeasible.

Assume now that 2 is infeasible and consider the linear program:

maximise by
subject to ATy < 07,
y free,
and its dual program:
minimise  (0")'z
subject to Ax = b,
x> 0"

y = 0™ will be an optimal solution to the primal program, since system 2 is infea-
sible. The Strong Duality Theorem implies thus that there is an optimal solution
to the dual program, which is feasible in system 1.

We have thus proved the equivalence

(1) & =(2).
Which is logically equivalent to

-(1) < (2).

This means that ezactly one of the systems 1 and 2 has a solution. [J

3 Characterization of convex functions in C'

Theorem
If f € C' on an open convex set S, then:
(a) fisconvexon S < f(y) > f(z)+ Vf(x) (y —x), Ve,y € S.
(b) fisconvex on S < [Vf(z)— Vf(y) (x—1y) >0, Ve,y e S.
Proof
(a) [=] Take ',x* € S and A € (0,1). Then we have that:
M)+ (1 =N f(@*) = fAa' + (1= N)z?)

=
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f@') = f(=*) = (N[f(Az' + (1= N)a®) = f(=?)],
which holds since A > 0. If we now let A — 0T, the right-hand side of the above

inequality goes to the directional derivative of f at 2 in the direction of (z! — x?).
The limit thus becomes:

flah) = f(@*) = Vf(x*)" (z' — 7).

The result follows.

[«<] We have that:

flah) = fa! + (1= Na?) + (1= \NVfQz' + (1= N)z®) (z' —a?),
f(@®) > fAzt + (1= Nx?) + AV + (1 - Nz (2® — =),

We multiply the inequalities with A and (1 — A), respectively, and add them to-
gether. This yields the result sought.

(b)[=] We use (a) and the two inequalities:
fy) = fle) +Vf(x)
fl@) = fy)+V/(y)

If we add them together, we get that [V f(x

T(y_$)7 wﬂyesa
T(x_y)v mﬂyes-
)= Vi (x—y) >0, Ve,yeS.

[«<] We get from the mean-value theorem that

fa®) = f(z') = Vf(z)" (z* — '), (3)
where & = A\x! + (1 — A\)z?, A € (0,1). By assumption we have that [V f(x)] —
ViEH)) (x — ') >0, s0 (1 = N[Vf(z) - V("] (z? —x') > 0. From this it
follows that Vf(z)*(x? — ') > Vf(x')T (x> — x'). By using this inequality and
(3), we get that f(x*) > f(z') + Vf(z')"(x? — z').

This completes the proof. [J

4 The Fundamental Theorem of global optimality

Theorem

Consider the problem:

minimise  f(x)
subject to x € 5,

If S is a convex set and f is a convex function on S, then every local minimum of
f over S is also a global minimum.
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Proof

Suppose x* is a local minimum, but not a global one. Consider then a vector € .S,
such that f(&) < f(x*). Let A € (0,1). The following holds by the convexity of S
and f:
A+ (1—-Nzxz"eS
fOz+ (1= Nz") < Af(z) + (1 - ) f(z") < f(z")

By choosing A > 0 small enough, we get a contradiction to the local optimality of
. U

5 Necessary optimality conditions, C' case

Theorem

Suppose that S C R" and that f : R® — RU{+oo} is in C! around a point & € S
for which f(x) < +o0.

(a) If £* € S is a local minimum of f over S, then V f(*)Tp > 0 holds for every
feasible direction p at x*.

(b) Suppose that S is convex and that f € C'(S). If * € S is a local minimum
of f over S, then
Vi) (x—-2)>0, z€8 (4)

holds.

Proof
(a) We begin by Taylor expanding f around x*:

f@* +ap) = f(z*) + aVf(z")'p+o(a).

The proof is by contradiction. We know from a proposition that if there is a di-
rection p for which it holds that Vf(z*)p < 0, then f(x* + ap) < f(x*) for all
sufficiently small o > 0. Here it suffices to state that p should be a feasible direction
in order to reach a contradiction to the local optimality of a*.

(b) If S is convex, then it holds that V& € S, p := & — «* is a feasible direc-
tion. Then (a) = (4). O
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6 Necessary and sufficient global optimality con-
ditions
Theorem

Suppose that S C R” is nonempty and convex. Let f : R™ — R be a function such
that f € C1(S). Then:

x* is a global minimum of f over S & Vf(z*)'(x —x*) >0, €S (5)

Proof

[=] This has been shown in the previous theorem, since a global minimum is a local
minimum.
[«<] The convexity of f yields that Vy € S,

fy) = f@) + V@) (y —a") > f(a"),

where the second inequality stems from the second part of (5). O

7 Karush—Kuhn—Tucker necessary conditions

Theorem

Assume that at a given point &* € S Abadie’s constraint qualification holds. If
x* € S is a local minimum of f over S, then du € R™ such that:

Vf(®") + > puiVgi(z*) =0
(6)
wigi(x*) =0, i=1,...;m,
n >0
In other words,

x* local minimum of f over S

Abadie’s CQ holds at x* } = 3p € R™ : (6) holds.

Proof

From theory we know that £'(z*) N Ts(x*) = 0, where

F(z*)={p e R" | Vf(z")"p <0}
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and Ts(x*) is the tangent cone. With G(z) := {p € R" | Vg;(z)Tp < 0,i € Z(x)},
where Z(x) denotes the index set of active inequality constraints at & € R"™, we get
due to our assumptions that F'(z*) U G(x*) = 0.

Now construct a matrix A with columns Vg;(x*), i € Z(x). Then, the system
ATp < 0F@) and —V f(z*)Tp > 0 has no solutions. |Z(z*)| denotes the cardinal-
ity of the set Z(z*). By Farkas’ Lemma the system A€ = —V f(x*), & > 07"
has a solution. Define the vector pzz+) = &, and p; = 0 for ¢ ¢ Z(x*). Then p
verifies the KKT conditions in (6). O

8 Sufficiency of the Karush—Kuhn—Tucker condi-
tions for convex problems

Theorem

Assume that the problem
minimise  f(x)
subject to x € S,
with the feasible set S given by:

S={xeR"|g(x)<0, i=1,...,m; hj(x)=0, j=1,...,0}

is convex, i.e. the objective function f as well as the functions g; are convex and
the function h; are affine. Assume further that for £* € S the KKT conditions:

m l
i=1 j=1 (7)

ﬁlgl(:c*) = U, 1= 1, L.,

are satisfied. Then x* is a globally optimal solution of the above problem. In other
words,

the above problem is convex

the KKT conditions (7) hold at z* } = x" global minimum in the above problem.

Proof

Choose an arbitrary & € S. Then by the convexity of the functions g; it holds that
— Vgi(x") (@ — x) > gi(a*) — gi(x) = —gi(x) > 0, Vie I(x"), (8)

6
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and using the affinity of the functions h; we get that
— Vhi(x*) (& — %) = hj(x*) — hj(x) =0, Vj=1,....L (9)

By using the convexity of the objective function, the first two parts of (7), the
non-negativity of p; and equations (8) and (9) we obtain the inequality

flx) = f(z") = Vf(z")" (z - =)

= 3 uVaE) @ -2 - LAV @)

1€Z(x*)
> 0.

Since o was arbitrary, * solves the problem. [

9 Relaxation theorem

Definitions
Given the problem to find

f*:= infimum f(x),
g (10)
subject to xebl,

where f : R" — R is a given function and S C R", we define a relaxation to (10)
to be a problem of the following form: find

fr = infimum fgr(x),
’ (11)

subject to x € Sg,
where fr : R™ : R is a function with the property that fr < f on S, and where
S C Sg.

Theorem
(a) [relazation] ff, < f*
(b) [infeasibility] If (11) is infeasible, then so is (10).

(c) [optimal relazation] If the problem (11) has an optimal solution, %, for which
it holds that

xp € S and fr(xy) = f(zh),

then ¥, is an optimal solution to (10) as well.
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Proof

The result in (a) is obvious, since every solution feasible in (10) is also feasible in
(11) and has a lower objective value in the latter problem. The result in (b) follows
for similar reasons. For the result in (c¢), we note that

f(xR) = fr(xy) < fr(x) < f(x), =x €S,

from which the result follows. [

10 Weak Duality Theorem

Theorem
Consider the following two problems:
fr= igrclﬁmum f(x),
subject to T e X, (12)
gi(x) <0, i=1,...,m,

where f : R” — R and ¢; : R" — R are given functions, and X C R". For this
problem we assume that —oo < f* < oc.

maximise ¢q(u),

g (13)
subject to  pu > 0™,

where ¢(u) := inﬁren)}lm L(x,p), called the Lagrangian dual function.

Let « and p be feasible in problems (12) and (13), respectively. Then ¢(p) < f(x)

and in particular, ¢* < f*.

Proof

Y > 0™ and & € X with g(x) < 0™,

() = infiryn L(z, ) < () + u"g (@) < f(a),

SO

* < infi = f"
q su%rfgglum q(p) < mél)l(:gl(lrlcl)lg&mf@) f

The result follows. [
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11 Global optimality conditions in the absence of
a duality gap

Theorem

The vector (x*,p*) is a pair of primal optimal solution and Lagrange multiplier
vector iff

p* > 0", (Dual feasibility)

*

x* € arg min L(x*, u*), (Lagrangian optimality)

rxeX (14)
e X, g(x*) <0™, (Primal feasibility)
wi(x®) =0, i=1,....m, (Complementary slackness)

Proof

Suppose that the pair (z*,u*) satisfies (14), then we have from the Dual feasibility
that the Lagrangian problem to minimise L(x,pu*) over & € X is a Lagrangian
relaxation of (12). We also have that &* solves (12) according to the Lagrangian
optimality. The Primal feasiblity shows that x* is feasible in (12), and the Com-
plementary slackness implies that L(x*, u*) = f(x*). We now use the Relaxation
Theorem which gives us that x* is optimal in (12), which implies that pu* is a
Lagrange multiplies vector.

Contrarily, if (z*, u*) is a pair of optimal primal solution and Lagrange multi-
plier vector, then they are primal and dual feasible, respectively. The Lagrangian
optimality and Complementary slackness follow from the Theorem of Lagrange
multipliers and global optima. []

12 Existence and properties of optimal solutions

Theorem

Let P:={x € R"| Az = b;x > 0"} and V := {v!,... ,v"} be the set of extreme
points of P. Furhter let C' =: {x € R" | Az = 0™;x > 0"} and D := {d',... ,d"}
be the set of extreme directions of C'. Consider the linear program:

minimise z = cTzc, (15)
subject to x € P.

(a) This problem has a finite optimal solution iff P is nonempty and z is lower
bounded on P, i.e. P is nonempty and c*d’ > 0V d’ € D.
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(b) If the problem has a finite optimal solution, then 3 an optimal solution
among the extreme points.

Proof

(a) Let @ € P. Then it follows from the Representation Theorem that

for some ay, ...,ap > 0 such that 3%  a; = 1, and f31,...,3. > 0. Then it follows
that

k T
'z =Y aic™v' +> pic'd. (17)
i=1 j=1

If we let « vary over P, the value of z will correspond to variations of the weights
a; and f;. The first term in the right-hand side of (17) is bounded as %, a; = 1.
The second term is lower bounded as x varies over P iff ¢'d’ > 0 holds Vd’ € D,
since otherwise we could let 8 — 400 for an index j with ¢'d’ < 0, and get that
z = —oo. If ¢'d” > 0Vd/ € D, then it is clearly optimal to choose 8; = 0 for

7 =1,...,r. It remains to search for the optimal solution in the convex hull of V.
(b) Assume that & € P is an optimal solution and let & be represented as in
(16). From the above we have that we can choose f; = -+ = 3, = 0, so we can

assume that
k
xr = Z ;v
i=1

Further let

a € arg minimum ¢l v’
te{1,....k}

Then,
k k k

ctv® = cTv® Z Q; = Z a;ct vt < Z actvt = cle,
i—1 i=1 i=1

that is, the extreme point v* is a global minimum. [J

13 Finiteness of the Simplex method

Theorem

If all of the basic feasible solutions (BFS) are non-degenerate, then the simplex
algorithm terminates after a finite number of iterations.

10
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Proof

A BFS is non-degenerate = it has exactly m positive components, and hence has
a unique associated basis. In this case, in the minimum ratio test,

. . (B~'b); -0
= minimuin e —— .
B e (BN)>0) (B-1N);

Therefore, at each iteration the objective value decreases and hence a BFS that has
appeared once can never reappear. Further, from a Corollary it follows that the
number of extreme points, hence the number of BFS, is finite. [

14 Strong Duality Theorem

Consider the primal linear program (P):
... T
minimise z = ¢ x,
subject to Ax =b.
x > 0",

and its dual linear program (D):
maximise w = by,

subject to Ay < e.
y free,

where A € R™". b€ R™ and ¢ € R".

Theorem

If the primal problem (P) and the dual problem (D) have feasible solutions, then
there exists optimal solutions to (P) and (D), and their optimal objective function
values are equal.

Proof

Since the dual (D) is feasible it follows from the Weak Duality Theorem that the
objective function value of (P) is bounded from below. Hence the Theorem of
Existence and properties of optimal solutions implies that there exists an optimal
BFS, z* = (x5,z%)T, to (P). We construct an optimal solution to (D):

(y") =cpB ™.

11
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Since * is an optimal BFS the reduced costs of the non-basic variables are non-
negative, which gives that ATy* < c. Hence y* is feasible to (D). Further we have

that
bly* =b" (B Y)'cg=cyB 'b=chxg=c"

x”,
so by a Corollary we have that y* is an optimal solution to (D). OJ

15 Complementary Slackness Theorem (I)
Theorem
Let @ be a feasible solution to (P) and y a feasible solution to (D). Then

x optimal to (P)

(oo — ATy — -
y optimal to (D)}(:)xﬂ(cﬂ A_Jy) 0, 7=1,....n,

where A ; is the j™ column of A.

Proof
If x and y are feasible we have that

c'ex > (ATy)'z = y" Az = b'y.

(19)

Further, by the Strong Duality Theorem and the Weak Duality Theorem, « and y

are optimal iff ¢'x = by, so (19) holds with equality, i.e.,
clx=(ATy) 'z oz (c- Ay) =0.

Since £ > 0" and ATy < ¢, z¥(c — ATy) = 0 is equivalent to each term in the

sum being zero, that is (17) holds. O

16 Complementary Slackness Theorem (II)

Often the Complementary Slackness Theorem is stated for the primal-dual pair

given by:
maximise c¢ x,
subject to Ax < b.

minimise by,

subject to AT > c.

12

(20)

(21)
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Theorem

Let « and y be feasible solutions to (20) and (21), respectively. Then @ and y are
optimal to (20) and (21), respectively, iff

zj(c; — yTA.j) =0, j=1,...n,
yz(Azw — bi) =0,

where A ; is the j' column of A and A; the i*® row of A. The proof is similar to
that of Complementary Slackness Theorem (I).

17 Global convergence of a penalty method
Theorem
Consider the constrained problem:

minimise  f(x)

. (22)
subject to x € S,

where S C R" is a nonempty, closed set and f : R" — R is a given differentiable
function.

Assume that this problem has optimal solutions. Then every limit point of the
sequence {x}}, v — 400, of globally optimal solutions to

minimisef () + vxs(@) (23)
is globally optimal in the problem (22). In other words,

x} globally optimal in (23)

Tt > 2 as v — 400 } = x* globally optimal in (22).

Proof
Let x* denote an arbitrary globally optimal solution to (22). From the inequality

fl@)) +vxs(e,) < fx"), (24)

and from a Lemma (penalization constitutes a relaxation) we obtain uniform bounds
on the penalty term vyg(x)) Vv > 1:

0 <wxs(e,) < f(x") - f(z]).

13
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Thus ys(x}) — 0 as v — +oo and every limit point of the sequence {x}} must be
feasible in (22), due to the continuity of xg.
Now let & denote an arbitrary limit point of {a*}, that is,

for some sequence {vy} converging to infinity. Then, we have the following chain of
inequalities:

f@) = lim fz;) < lim {f(z] ) +wxs(@, )} < f(z),

k——+o0 k——+o0

where the last inequality follows from (24). However, due to the feasiblity of &
in (22) the reverse inequality f(x*) < f(&) must also hold. The two inequalities
combined imply the required claim. [J

14
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