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Introduction
This text is written as an aid for those that are taking the course TMA947 Nonlin-
ear optimisation 2014/15. It contains the recommended theorems and proofs from
the year 2014/15 taken from the book An Introduction to Continuous Optimization
(second edition) by Niclas Andréasson, Anton Evgrafov, Michael Patriksson, Emil
Gustavsson and Magnus Önnheim.
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1 Separation Theorem
Theorem

Suppose that the set C ⊆ Rn is nonempty, closed and convex. Supoose further
that the point y 6∈ C. Then it holds that ∃ a vector π 6= 0n and α ∈ R such that
πTy > α and πTx ≤ α, ∀x ∈ C.

Proof

Define a function f : Rn → R as f(x) := ‖x− y‖2/2, x ∈ Rn. From Weierstrass’
theorem we get that ∃ a minimum x̃ of f over C. By the first-order optimality
conditions, the minimum is characterised by the variational inequality:

(y− x̃)T(x− x̃) ≤ 0, ∀x ∈ C (since −∇f(x̃) = y− x̃)

We now define π := y− x̃. Since y 6∈ C, π will be non-zero. Let α := (y− x̃)Tx̃.
The above variational inequality gives now that πTx ≤ πTx̃ = α, ∀x ∈ C, while
πTy − α = (y− x̃)T(y− x̃) = ‖y− x̃‖2 > 0. �

2 Farkas’ Lemma
Theorem

Consider the systems:

Ax = b,

x ≥ 0n,
(1)

and

ATy ≤ 0n,
bTy > 0.

(2)

If A ∈ Rm×n and b ∈ Rm, then exactly one of the systems 1 and 2 has a feasible
solution, and the other system is inconsistent.

Proof

Assume that system 1 has a solution x, then

bTy = xTATy > 0

1
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But x ≥ 0n ⇒ ATy ≤ 0n cannot hold ⇒ system 2 is infeasible.

Assume now that 2 is infeasible and consider the linear program:

maximise bTy

subject to ATy ≤ 0n,
y free,

and its dual program:
minimise (0n)Tx

subject to Ax = b,

x ≥ 0n.
y = 0m will be an optimal solution to the primal program, since system 2 is infea-
sible. The Strong Duality Theorem implies thus that there is an optimal solution
to the dual program, which is feasible in system 1.

We have thus proved the equivalence

(1)⇔ ¬(2).

Which is logically equivalent to

¬(1)⇔ (2).

This means that exactly one of the systems 1 and 2 has a solution. �

3 Characterization of convex functions in C1

Theorem

If f ∈ C1 on an open convex set S, then:

(a) f is convex on S ⇔ f(y) ≥ f(x) +∇f(x)T(y− x), ∀x,y ∈ S.

(b) f is convex on S ⇔ [∇f(x)−∇f(y)]T(x− y) ≥ 0, ∀x,y ∈ S.

Proof

(a) [⇒] Take x1,x2 ∈ S and λ ∈ (0,1). Then we have that:

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2)

⇔

2
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f(x1)− f(x2) ≥ (1/λ)[f(λx1 + (1− λ)x2)− f(x2)],
which holds since λ > 0. If we now let λ → 0+, the right-hand side of the above
inequality goes to the directional derivative of f at x2 in the direction of (x1−x2).
The limit thus becomes:

f(x1)− f(x2) ≥ ∇f(x2)T(x1 − x2).
The result follows.

[⇐] We have that:

f(x1) ≥ f(λx1 + (1− λ)x2) + (1− λ)∇f(λx1 + (1− λ)x2)T(x1 − x2),
f(x2) ≥ f(λx1 + (1− λ)x2) + λ∇f(λx1 + (1− λ)x2)T(x2 − x1).

We multiply the inequalities with λ and (1 − λ), respectively, and add them to-
gether. This yields the result sought.

(b)[⇒] We use (a) and the two inequalities:
f(y) ≥ f(x) +∇f(x)T(y− x), x,y ∈ S,
f(x) ≥ f(y) +∇f(y)T(x− y), x,y ∈ S.

If we add them together, we get that [∇f(x)−∇f(y)]T(x− y) ≥ 0, ∀x,y ∈ S.

[⇐] We get from the mean-value theorem that
f(x2)− f(x1) = ∇f(x)T(x2 − x1), (3)

where x = λx1 + (1 − λ)x2, λ ∈ (0,1). By assumption we have that [∇f(x)] −
∇f(x1)]T(x − x1) ≥ 0, so (1 − λ)[∇f(x) − ∇f(x1)]T(x2 − x1) ≥ 0. From this it
follows that ∇f(x)T(x2 − x1) ≥ ∇f(x1)T(x2 − x1). By using this inequality and
(3), we get that f(x2) ≥ f(x1) +∇f(x1)T(x2 − x1).
This completes the proof. �

4 The Fundamental Theorem of global optimality
Theorem

Consider the problem:

minimise f(x)
subject to x ∈ S,

If S is a convex set and f is a convex function on S, then every local minimum of
f over S is also a global minimum.

3
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Proof

Suppose x∗ is a local minimum, but not a global one. Consider then a vector x̄ ∈ S,
such that f(x̄) < f(x∗). Let λ ∈ (0,1). The following holds by the convexity of S
and f :

λx̄+ (1− λ)x∗ ∈ S

f(λx̄+ (1− λ)x∗) ≤ λf(x̄) + (1− λ)f(x∗) < f(x∗)

By choosing λ > 0 small enough, we get a contradiction to the local optimality of
x∗. �

5 Necessary optimality conditions, C1 case
Theorem

Suppose that S ⊆ Rn and that f : Rn → R∪{+∞} is in C1 around a point x ∈ S
for which f(x) < +∞.

(a) If x∗ ∈ S is a local minimum of f over S, then ∇f(x∗)Tp ≥ 0 holds for every
feasible direction p at x∗.

(b) Suppose that S is convex and that f ∈ C1(S). If x∗ ∈ S is a local minimum
of f over S, then

∇f(x∗)T(x− x∗) ≥ 0, x ∈ S (4)

holds.

Proof

(a) We begin by Taylor expanding f around x∗:

f(x∗ + αp) = f(x∗) + α∇f(x∗)Tp+ o(α).

The proof is by contradiction. We know from a proposition that if there is a di-
rection p for which it holds that ∇f(x∗)p < 0, then f(x∗ + αp) < f(x∗) for all
sufficiently small α > 0. Here it suffices to state that p should be a feasible direction
in order to reach a contradiction to the local optimality of x∗.

(b) If S is convex, then it holds that ∀x ∈ S, p := x − x∗ is a feasible direc-
tion. Then (a) ⇒ (4). �
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6 Necessary and sufficient global optimality con-
ditions

Theorem

Suppose that S ⊆ Rn is nonempty and convex. Let f : Rn → R be a function such
that f ∈ C1(S). Then:

x∗ is a global minimum of f over S ⇔ ∇f(x∗)T(x− x∗) ≥ 0, x ∈ S (5)

Proof

[⇒] This has been shown in the previous theorem, since a global minimum is a local
minimum.
[⇐] The convexity of f yields that ∀y ∈ S,

f(y) ≥ f(x∗) +∇f(x∗)T(y − x∗) ≥ f(x∗),

where the second inequality stems from the second part of (5). �

7 Karush–Kuhn–Tucker necessary conditions
Theorem

Assume that at a given point x∗ ∈ S Abadie’s constraint qualification holds. If
x∗ ∈ S is a local minimum of f over S, then ∃µ ∈ Rm such that:

∇f(x∗) +
m∑
i=1

µi∇gi(x∗) = 0n

µigi(x∗) = 0, i = 1, . . . ,m,
µ ≥ 0m.

(6)

In other words,

x∗ local minimum of f over S
Abadie’s CQ holds at x∗

}
⇒ ∃µ ∈ Rm : (6) holds.

Proof

From theory we know that F̊ (x∗) ∩ TS(x∗) = ∅, where

F̊ (x∗) := {p ∈ Rn | ∇f(x∗)Tp < 0}

5
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and TS(x∗) is the tangent cone. With G(x) := {p ∈ Rn | ∇gi(x)Tp < 0, i ∈ I(x)},
where I(x) denotes the index set of active inequality constraints at x ∈ Rn, we get
due to our assumptions that F̊ (x∗) ∪G(x∗) = ∅.

Now construct a matrix A with columns ∇gi(x∗), i ∈ I(x). Then, the system
ATp < 0|I(x∗)| and −∇f(x∗)Tp > 0 has no solutions. |I(x∗)| denotes the cardinal-
ity of the set I(x∗). By Farkas’ Lemma the system Aξ = −∇f(x∗), ξ ≥ 0|I(x∗)|

has a solution. Define the vector µI(x∗) = ξ, and µi = 0 for i 6∈ I(x∗). Then µ
verifies the KKT conditions in (6). �

8 Sufficiency of the Karush–Kuhn–Tucker condi-
tions for convex problems

Theorem

Assume that the problem
minimise f(x)
subject to x ∈ S,

with the feasible set S given by:

S := {x ∈ Rn | gi(x) < 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . ,l}

is convex, i.e. the objective function f as well as the functions gi are convex and
the function hj are affine. Assume further that for x∗ ∈ S the KKT conditions:

∇f(x∗) +
m∑
i=1

µ̃i∇gi(x∗) +
l∑

j=1
λ̃j∇hj(x∗) = 0n,

µ̃igi(x∗) = 0, i = 1, . . . ,m,
µ̃ ≥ 0m.

(7)

are satisfied. Then x∗ is a globally optimal solution of the above problem. In other
words,

the above problem is convex
the KKT conditions (7) hold at x∗

}
⇒ x∗ global minimum in the above problem.

Proof

Choose an arbitrary x ∈ S. Then by the convexity of the functions gi it holds that

−∇gi(x∗)T(x− x∗) ≥ gi(x∗)− gi(x) = −gi(x) ≥ 0, ∀i ∈ I(x∗), (8)

6
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and using the affinity of the functions hj we get that

−∇hj(x∗)T(x− x∗) = hj(x∗)− hj(x) = 0, ∀j = 1, . . . ,l. (9)

By using the convexity of the objective function, the first two parts of (7), the
non-negativity of µi and equations (8) and (9) we obtain the inequality

f(x)− f(x∗) ≥ ∇f(x∗)T(x− x∗)

= −
∑

i∈I(x∗)
µi∇gi(x∗)T(x− x∗)−

l∑
j=1

λj∇hj(x∗)T(x− x∗)

≥ 0.

Since x was arbitrary, x∗ solves the problem. �

9 Relaxation theorem
Definitions

Given the problem to find

f ∗ := infimum
x

f(x),

subject to x ∈ S,
(10)

where f : Rn → R is a given function and S ⊆ Rn, we define a relaxation to (10)
to be a problem of the following form: find

f ∗R := infimum
x

fR(x),

subject to x ∈ SR,
(11)

where fR : Rn : R is a function with the property that fR < f on S, and where
S ⊆ SR.

Theorem

(a) [relaxation] f ∗R ≤ f ∗

(b) [infeasibility] If (11) is infeasible, then so is (10).

(c) [optimal relaxation] If the problem (11) has an optimal solution, x∗R, for which
it holds that

x∗R ∈ S and fR(x∗R) = f(x∗R),
then x∗R is an optimal solution to (10) as well.

7
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Proof

The result in (a) is obvious, since every solution feasible in (10) is also feasible in
(11) and has a lower objective value in the latter problem. The result in (b) follows
for similar reasons. For the result in (c), we note that

f(x∗R) = fR(x∗R) ≤ fR(x) ≤ f(x), x ∈ S,

from which the result follows. �

10 Weak Duality Theorem
Theorem

Consider the following two problems:

f ∗ := infimum
x

f(x),

subject to x ∈ X,
gi(x) ≤ 0, i = 1, . . . ,m,

(12)

where f : Rn → R and gi : Rn → R are given functions, and X ⊆ Rn. For this
problem we assume that −∞ < f ∗ <∞.

maximise
µ

q(µ),

subject to µ ≥ 0m,
(13)

where q(µ) := infimum
x∈X

L(x,µ), called the Lagrangian dual function.

Let x and µ be feasible in problems (12) and (13), respectively. Then q(µ) ≤ f(x)
and in particular, q∗ < f ∗.

Proof

∀µ > 0m and x ∈ X with g(x) ≤ 0m,

q(µ) = infimum
z∈X

L(z,µ) ≤ f(x) + µTg(x) ≤ f(x),

so
q∗ = supremum

µ>0m
q(µ) ≤ infimum

x∈X:g(x)≤0m
f(x) = f ∗

The result follows. �

8
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11 Global optimality conditions in the absence of
a duality gap

Theorem

The vector (x∗,µ∗) is a pair of primal optimal solution and Lagrange multiplier
vector iff

µ∗ ≥ 0m, (Dual feasibility)
x∗ ∈ arg min L(x∗,µ∗)

x∈X
, (Lagrangian optimality)

x∗ ∈ X, g(x∗) ≤ 0m, (Primal feasibility)
µ∗i (x∗) = 0, i = 1, . . . ,m,. (Complementary slackness)

(14)

Proof

Suppose that the pair (x∗,µ∗) satisfies (14), then we have from the Dual feasibility
that the Lagrangian problem to minimise L(x,µ∗) over x ∈ X is a Lagrangian
relaxation of (12). We also have that x∗ solves (12) according to the Lagrangian
optimality. The Primal feasiblity shows that x∗ is feasible in (12), and the Com-
plementary slackness implies that L(x∗,µ∗) = f(x∗). We now use the Relaxation
Theorem which gives us that x∗ is optimal in (12), which implies that µ∗ is a
Lagrange multiplies vector.

Contrarily, if (x∗,µ∗) is a pair of optimal primal solution and Lagrange multi-
plier vector, then they are primal and dual feasible, respectively. The Lagrangian
optimality and Complementary slackness follow from the Theorem of Lagrange
multipliers and global optima. �

12 Existence and properties of optimal solutions
Theorem

Let P := {x ∈ Rn |Ax = b;x ≥ 0n} and V := {v1, . . . ,vk} be the set of extreme
points of P . Furhter let C =: {x ∈ Rn | Ax = 0m;x ≥ 0n} and D := {d1, . . . ,dr}
be the set of extreme directions of C. Consider the linear program:

minimise z = cTx,

subject to x ∈ P.
(15)

(a) This problem has a finite optimal solution iff P is nonempty and z is lower
bounded on P , i.e. P is nonempty and cTdj ≥ 0 ∀dj ∈ D.

9
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(b) If the problem has a finite optimal solution, then ∃ an optimal solution
among the extreme points.

Proof

(a) Let x ∈ P . Then it follows from the Representation Theorem that

x =
k∑
i=1

αiv
i +

r∑
j=1

βjd
j, (16)

for some α1, . . . ,αk ≥ 0 such that ∑k
i=1 αi = 1, and β1, . . . ,βr ≥ 0. Then it follows

that

cTx =
k∑
i=1

αic
Tvi +

r∑
j=1

βjc
Tdj. (17)

If we let x vary over P , the value of z will correspond to variations of the weights
αi and βj. The first term in the right-hand side of (17) is bounded as ∑k

i=1 αi = 1.
The second term is lower bounded as x varies over P iff cTdj ≥ 0 holds ∀dj ∈ D,
since otherwise we could let β → +∞ for an index j with cTdj < 0, and get that
z → −∞. If cTdj ≥ 0 ∀dj ∈ D, then it is clearly optimal to choose βj = 0 for
j = 1, . . . ,r. It remains to search for the optimal solution in the convex hull of V .

(b) Assume that x ∈ P is an optimal solution and let x be represented as in
(16). From the above we have that we can choose β1 = · · · = βr = 0, so we can
assume that

x =
k∑
i=1

αiv
i.

Further let
a ∈ arg minimum

i∈{1,...,k}
cTvi.

Then,

cTva = cTva
k∑
i=1

αi =
k∑
i=1

αic
Tva ≤

k∑
i=1

αic
Tvi = cTx,

that is, the extreme point va is a global minimum. �

13 Finiteness of the Simplex method
Theorem

If all of the basic feasible solutions (BFS) are non-degenerate, then the simplex
algorithm terminates after a finite number of iterations.

10
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Proof

A BFS is non-degenerate ⇒ it has exactly m positive components, and hence has
a unique associated basis. In this case, in the minimum ratio test,

µ∗ = minimum
i∈{k | (B−1Nj)k>0}

(B−1b)i
(B−1Nj)i

> 0.

Therefore, at each iteration the objective value decreases and hence a BFS that has
appeared once can never reappear. Further, from a Corollary it follows that the
number of extreme points, hence the number of BFS, is finite. �

14 Strong Duality Theorem
Consider the primal linear program (P):

minimise z = cTx,

subject to Ax = b.

x ≥ 0n,

and its dual linear program (D):

maximise w = bTy,

subject to ATy ≤ c.
y free,

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn.

Theorem

If the primal problem (P) and the dual problem (D) have feasible solutions, then
there exists optimal solutions to (P) and (D), and their optimal objective function
values are equal.

Proof

Since the dual (D) is feasible it follows from the Weak Duality Theorem that the
objective function value of (P) is bounded from below. Hence the Theorem of
Existence and properties of optimal solutions implies that there exists an optimal
BFS, x∗ = (xT

B,x
T
N)T, to (P). We construct an optimal solution to (D):

(y∗) := cT
BB

−1.

11
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Since x∗ is an optimal BFS the reduced costs of the non-basic variables are non-
negative, which gives that ATy∗ ≤ c. Hence y∗ is feasible to (D). Further we have
that

bTy∗ = bT(B−1)TcB = cT
BB

−1b = cT
BxB = cTx∗,

so by a Corollary we have that y∗ is an optimal solution to (D). �

15 Complementary Slackness Theorem (I)
Theorem

Let x be a feasible solution to (P) and y a feasible solution to (D). Then

x optimal to (P)
y optimal to (D)

}
⇔ xj(cj −AT

.jy) = 0, j = 1, . . . ,n, (18)

where A.j is the jth column of A.

Proof

If x and y are feasible we have that

cTx ≥ (ATy)Tx = yTAx = bTy. (19)

Further, by the Strong Duality Theorem and the Weak Duality Theorem, x and y
are optimal iff cTx = bTy, so (19) holds with equality, i.e.,

cTx = (ATy)Tx⇔ xT(c−ATy) = 0.

Since x ≥ 0n and ATy ≤ c, xT(c −ATy) = 0 is equivalent to each term in the
sum being zero, that is (17) holds. �

16 Complementary Slackness Theorem (II)
Often the Complementary Slackness Theorem is stated for the primal-dual pair
given by:

maximise cTx,

subject to Ax ≤ b.
x ≥ 0n,

(20)

minimise bTy,

subject to AT ≥ c.
y ≥ 0m,

(21)

12
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Theorem

Let x and y be feasible solutions to (20) and (21), respectively. Then x and y are
optimal to (20) and (21), respectively, iff

xj(cj − yTA.j) = 0, j = 1, . . . ,n,
yi(Ai.x− bi) = 0, i = 1, . . . ,m,

where A.j is the jth column of A and Ai. the ith row of A. The proof is similar to
that of Complementary Slackness Theorem (I).

17 Global convergence of a penalty method
Theorem

Consider the constrained problem:

minimise f(x)
subject to x ∈ S,

(22)

where S ⊆ Rn is a nonempty, closed set and f : Rn → R is a given differentiable
function.

Assume that this problem has optimal solutions. Then every limit point of the
sequence {x∗ν}, ν → +∞, of globally optimal solutions to

minimise
x∈Rn

f(x) + νχ̃S(x) (23)

is globally optimal in the problem (22). In other words,

x∗ν globally optimal in (23)
x∗ν → x∗ as ν → +∞

}
⇒ x∗ globally optimal in (22).

Proof

Let x∗ denote an arbitrary globally optimal solution to (22). From the inequality

f(x∗ν) + νχ̃S(x∗ν) ≤ f(x∗), (24)

and from a Lemma (penalization constitutes a relaxation) we obtain uniform bounds
on the penalty term νχ̃S(x∗ν) ∀ ν ≥ 1 :

0 ≤ νχ̃S(x∗ν) ≤ f(x∗)− f(x∗1).

13
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Thus χ̃S(x∗ν)→ 0 as ν → +∞ and every limit point of the sequence {x∗ν} must be
feasible in (22), due to the continuity of χ̃S.

Now let x̂ denote an arbitrary limit point of {x∗ν}, that is,

lim
k→∞

x∗νk
= x̂,

for some sequence {νk} converging to infinity. Then, we have the following chain of
inequalities:

f(x̂) = lim
k→+∞

f(x∗νk
) ≤ lim

k→+∞
{f(x∗νk

) + νkχ̃S(x∗νk
)} ≤ f(x∗),

where the last inequality follows from (24). However, due to the feasiblity of x̂
in (22) the reverse inequality f(x∗) ≤ f(x̂) must also hold. The two inequalities
combined imply the required claim. �

14
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